Order statistics of observed network degrees
نویسندگان
چکیده
This article discusses the properties of extremes of degree sequences calculated from network data. We introduce the notion of a normalized degree, in order to permit a comparison of degree sequences between networks with differing numbers of nodes. We model each normalized degree as a bounded continuous random variable, and determine the properties of the ordered k-maxima and minima of the normalized network degrees when they comprise a random sample from a Beta distribution. In this setting, their means and variances take a simplified form given by their ordering, and we discuss the relation of these quantities to other prescribed decays such as power laws. We verify the derived properties from simulated sets of normalized degrees, and discuss possible extensions to more flexible classes of distributions.
منابع مشابه
Graph Prediction in Movie Graphs
Graphs can be used in applied in both an unsupervised and supervised context that can augment classification tasks. This paper focuses on a set of movie graphs that correspond to actor interactions in movies associated with various genres. I first compare the graph statistics between two disparate genres and perform random walks and analyze the eigenvalue and eigenvectors of the adjacency matri...
متن کاملMapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network
The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...
متن کاملBayesian Prediction Intervals for Future Order Statistics from the Generalized Exponential Distribution
Let X1, X2, ..., Xr be the first r order statistics from a sample of size n from the generalized exponential distribution with shape parameter θ. In this paper, we consider a Bayesian approach to predicting future order statistics based on the observed ordered data. The predictive densities are obtained and used to determine prediction intervals for unobserved order statistics for one-sample ...
متن کاملA Novel Combinatorial Approach to Discrete Fracture Network Modeling in Heterogeneous Media
Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modelin...
متن کاملStream Flow Prediction in Flood Plain by Using Artificial Neural Network (Case Study: Sepidroud Watershed)
In order to determine hydrological behavior and water management of Sepidroud River (North of Iran-Guilan) the present study has focused on stream flow prediction by using artificial neural network. Ten years observed inflow data (2000-2009) of Sepidroud River were selected; then these data have been forecasted by using neural network. Finally, predicted results are compared to the observed dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.4377 شماره
صفحات -
تاریخ انتشار 2012